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1. Introduction

Throughout the paper R will always denote an associative ring with
unity. R[x; σ, δ] will stand for the Ore extension of R, where σ is an
injective endomorphism and δ a σ-derivation of R.

It is well-known that when R is semiprime and σ is an automorphism
then the Ore extension R[x; σ; δ] is a semiprime left (right) Goldie ring
if and only if the ring R is such and then R and R[x; σ, δ] have the
same uniform dimensions. On the other hand, the easiest examples of
left but not right Ore domains can be constructed as Ore extensions of
the form R[x;σ], where R is a field and σ is an injective endomorphism
of R which is not onto. In such a case left uniform dimensions of R and
R[x;σ] are equal to one but right uniform dimensions of those rings are
equal to one and infinity, respectively.

The aim of the paper is to show that when R is a semiprime left
Goldie ring and σ is injective then the Ore extension R[x;σ, δ] is also
semiprime left Goldie and both rings have the same left uniform di-
mensions. Contrary to the automorphism case, the fact that R[x; σ, δ]
is semiprime left Goldie and R is semiprime does not imply that R is
left Goldie.

In section 2 below, with the help of certain classification results
concerning injective endomorphisms and skew derivations, obtained in
(Cauchon and Robson, 1978), we study Jordan extensions. In particu-
lar, the Jordan extensions of semisimple rings are completely described.
These extensions are important tools for proving our main results in
section 3. In this section we also show that the ring R and its Jor-
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dan extension A have the same left uniform dimension provided R is
semiprime left Goldie.

2. Jordan Extensions

Let R be ring with a fixed injective endomorphism σ. We say that
an over-ring A of R is a Jordan extension of R if σ extends to an
automorphism of A and A =

⋃∞
i=0 σ−i(R). In this case we will write

R ⊆σ A.
Jordan showed (Cf. (Jordan, 1982)), with the use of left localization

of the Ore extension R[x; σ] with respect to the set of powers of x, that
for any pair (R, σ), such an extension A always exists. Then he studied
the passage of various algebraic properties from R to A.

It is easy to observe that the Jordan extension A of R is an universal
object, i.e. if R ⊆σ A and R ⊆σ A′ are two Jordan extensions of R then
the rings A and A′ are isomorphic, by an isomorphism which is identity
on R.

In this section we will analyse the Jordan extension and collect
some basic facts preparing the ground for results contained in the next
section.

Throughout the paper N will denote the set of all natural numbers
and N0 will stand for the set of all nonnegative integers.

If σ is an endomorphism of the ring R, then σ naturally induces the
endomorphism Mn(σ) of the full n× n matrix ring Mn(R).

For an invertible element u ∈ R, Iu will denote the inner automor-
phism of R adjoint to u, i.e. Iu(r) = u−1ru for all r ∈ R.

LEMMA 2.1. Suppose that R ⊆σ A is a Jordan extension and u ∈ R
is an invertible element. Then:

1. For any n ∈ N, Mn(R) ⊆Mn(σ) Mn(A) is a Jordan extension.

2. If τ is an automorphism of A such that στ = τσ, then τ(R) ⊆σ A
is a Jordan extension. If additionally τ(R) ⊆ R then R ⊆στ A is
also a Jordan extension.

3. R ⊆Iuσ A is a Jordan extension.

PROOF. The statements (1) (2) are clear.
(3) Obviously Iuσ is an automorphism of A such that Iuσ(R) ⊆ R.
Let a ∈ A. Then there exists n ∈ N such that σn(a) ∈ R and, conse-

quently, (Iuσ)n(a) = u−1σ(u−1) . . . σn−1(u−1)σn(a)σn−1(u) . . . σ(u)u ∈
R follows. ¤
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PROPOSITION 2.2. Let A be an over-ring of a ring R and σ an injec-
tive endomorphism of R. The following statements are equivalent:

1. For all k ∈ N0 and n ∈ N, σk(R) ⊆σn A is a Jordan extension.

2. For all n ∈ N , R ⊆σn A is a Jordan extension.

3. R ⊆σ A is a Jordan extension.

4. There exists n0 ∈ N such that R ⊆σn0 A is a Jordan extension.

5. There exist k0 ∈ N0 and n0 ∈ N such that σk0(R) ⊆σn0 A is a
Jordan extension.

PROOF. We only need to prove the implication (5) ⇒ (1). Suppose
that k0 ∈ N0 and n0 ∈ N are such that σk0(R) ⊆σn0 A is a Jordan
extension. In view of Lemma 2.1(2), it is enough to show that R ⊆σ A is
a Jordan extension. For doing so, let us see how to extend the injective
endomorphism σ of R to an automorphism σ̄ of A. By assumption,
we know that for any a ∈ A there exists l = l(a) ∈ N such that
b := (σn0)l(a) ∈ σk0(R). Then we set σ(a) := (σn0)−l(σ(b)) ∈ A. This
definition makes sense, i.e. it does not depend on the choice of l, since
σn0 is an automorphism of A.

It is easy to check that σ̄ is an endomorphism of A such that, for any
r ∈ R, σ(r) = σ(r) and σ−n0(σ(r)) = σ(σ−n0(r)). Using this, one can
check that (σ)n0 = (σ)n0 . This yields that σ̄ is an automorphism of A
such that σ = σ̄|R. Then it is clear that R ⊆σ A is a Jordan extension.

¤

PROPOSITION 2.3. Let R be a ring with an injective endomorphism
σ. Then:

1. If R is a simple artinian ring and R ⊆σ A is the corresponding
Jordan extension, then A is also simple artinian.

2. Suppose that there is a finite bound on the cardinality of sets of
orthogonal idempotents of R. Thus R =

∏n
i=1 Ri is a finite product

of indecomposable rings. Then:

a) There exists a permutation ρ ∈ Sn of the index set {1, . . . , n}
such that σ(Ri) ⊆ Rρ(i).

b) There exists l ∈ N such that, for any 1 ≤ i ≤ n, the restriction
σl

i of σl to Ri is an injective endomorphism of Ri.
c) Suppose that l ∈ N is as in (b) above and for any 1 ≤ i ≤ n,

Ri ⊆σl
i

Ai is a Jordan extension. Then σ can be extended to
an automorphism of

∏n
i=1 Ai and

∏n
i=1 Ri ⊆σ

∏n
i=1 Ai is a

Jordan extension.
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PROOF. (1) Suppose that R is simple artinian and R ⊆σ A is the
corresponding Jordan extension. If R = D is a division ring, then it
is known and easy to show that A is also a division ring in this case.
Let R = Mn(D) where D is a division ring. Then, by Theorem 2.4 of
(Cauchon and Robson, 1978), there exists an endomorphism τ of D
and an invertible element u ∈ R such that σ = IuMn(τ). Let K be
the division ring such that D ⊆τ K is a Jordan extension. Then, by
Lemma 2.1(1) and (3), we easily obtain that Mn(D) ⊆σ Mn(K) is a
Jordan extension. This means that A = Mn(K) is simple artinian.

(2) Suppose that R =
∏n

i=1 Ri.
The statement (a) is exactly Lemma 1.1 from (Cauchon and Robson,
1978).

(b) Let l denote the order of ρ in Sn. By (a) above σl(Ri) ⊆ Ri for
any 1 ≤ i ≤ n and clearly the restriction σl

i is monic. Now, by Theorem
1.3(Cauchon and Robson, 1978) applied to σl, we obtain σl

i(ei) = ei,
where ei denotes the unity of Ri.

(c) Let 1 ≤ i ≤ n and l be as in (b). In view of (b), we can consider
the Jordan extensions Ri ⊆σl

i
Ai for 1 ≤ i ≤ n. Then

∏n
i=1 Ri ⊆σl∏n

i=1 Ai is also a Jordan extension. Now, Proposition 2.2 completes the
proof. ¤

The above Proposition gives us immediately the following:

COROLLARY 2.4. Let a Jordan extension R ⊆σ A of a semisimple
ring R be given. Then A is semisimple. In fact, if R =

∏n
i=1 Mni(Di)

for some division rings Di, then A =
∏n

i=1 Mni(Ki) for suitable division
rings Ki.

For a semiprime left Goldie ring R, Q(R) will denote the classical
left quotient ring of R. Recall that, by Goldie’s Theorem, Q(R) is a
semisimple ring.

The following results will be useful for our purposes.

PROPOSITION 2.5. Let R be a semiprime left Goldie ring with an
injective endomorphism σ and R ⊆σ A be the corresponding Jordan
extension. Then:

1. σ(C) ⊆ C, where C denotes the set of all regular elements of R.

2. σ can be uniquely extended to an injective endomorphism of Q(R).

3. A is a semiprime left Goldie ring and Q(R) ⊆σ Q(A) is a Jordan
extension.

4. Every σ-derivation δ of R has a unique extension to a σ-derivation
of Q(R).
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PROOF. The first statement is a special case of a result of Jategaonkar
(Cf. Proposition 2.4 (Jategaonkar, 1972)) which states that σ(C) ⊆ C
when R has left artinian quotient ring.

(2), (4). The fact that σ can be extended to Q(R) is a well-known
consequence of (1). Then, it is also known (Cf. Lemma 1.3 (Goodearl,
1992)) that every σ-derivation δ of R extends uniquely to a σ-derivation
of Q(R) and δ(c−1) = −σ(c−1)δ(c)c−1 for all c ∈ C.

(3). We know that Q(R) is semisimple. Let Q(R) ⊆σ A(Q(R)) be
a Jordan extension for σ extended to Q(R). Then, by Corollary 2.4,
A(Q(R)) is also semisimple.

For any x ∈ A(Q(R)) there exist n ∈ N, c ∈ C and r ∈ R such
that σn(x) = c−1r, i.e. x = σ−n(c−1)σ−n(r). This shows that A :=⋃∞

i=0 σ−i(R) ⊆ A(Q(R)) is a left order in the semisimple ring A(Q(R)).
Now, Theorem 3.1.7 in (McConnell and Robson, 1987) yields that A is
semiprime left Goldie. Then A(Q(R)) = Q(A) easily follows. ¤

The statement (3) from the above proposition was also obtained,
using other methods, by Jordan in (Jordan, 1982) (see (Jordan, 1982)
Corollary 7.5, Proposition 7.1 and Theorem 7.2). The above proof was
given both for completeness of the presentation and as an application
of Corollary 2.4.

The following proposition shows that in case the σ-derivation δ is q-
quantized, i.e. δσ = qσδ for some central, σ and δ invariant element q ∈
R, a Jordan extension R ⊆σ A leads to a Jordan extension R[x;σ, δ] ⊆σ

A[x; σ, δ].

PROPOSITION 2.6. Let R ⊆σ A be a Jordan extension and δ be a
q-quantized σ-derivation of R. Then:

1. δ can be uniquely extended to a q-quantized σ-derivation of A.

2. σ can be extended to an injective endomorphism of R[x; σ, δ]. More-
over, R[x;σ, δ] ⊆σ A[x; σ, δ] is a Jordan extension.

PROOF. (1). Suppose that δ̄ is an extension of δ to a q-quantized σ-
derivation of A. Let a ∈ A and n ∈ N0 be such that σn(a) ∈ R. Then
δ̄(a) = q−nσ−n(δ̄(σn(a))) = q−nσ−n(δ(σn(a))). This shows that δ̄ is
uniquely determined by δ and σ.

Notice also that if a ∈ A and n,m ∈ N0 are such that σn(a), σm(a) ∈
R, then q−nσ−n(δ(σn(a))) = q−mσ−m(δ(σm(a))). Now, it is standard
to check that δ: A → A given by δ(a) = q−nσ−n(δ(σn(a))), where
n ∈ N0 is such that σn(a) ∈ R is a well defined q-quantized σ-derivation
of A.

(2). The fact that σ can be extended to an injective endomorphism
of R[x;σ, δ] is part of folklore: just define σ(x) = q−1x.
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Let p =
∑l

i=0 aix
i ∈ A[x; σ, δ]. By assumption, there are ni ∈ N0,

with 0 ≤ i ≤ l, such that σni(ai) ∈ R. Then σn(p) ∈ R[x;σ, δ] where
n = max{ni | 0 ≤ i ≤ l}. This easily yields that R[x; σ, δ] ⊆σ A[x; σ, δ]
is a Jordan extension. ¤

3. Main Results

We begin this section with a description of skew polynomial rings over
semisimple rings.

LEMMA 3.1. Let R be a semisimple ring, σ and δ an injective endo-
morphism and a σ-derivation of R, respectively. Then either

1. R is simple artinian and there exists a division ring D with an
endomorphism σ′ and σ′-derivation δ′ such that R[x, σ, δ] is iso-
morphic to Mm(D[y, σ′, δ′]) for some m ∈ N.

or

2 There exists a ring decomposition R[x; σ, δ] =
∏k

j=1 Bj [xj , σj , δj ]
such that:

a) σj is an injective endomorphism of Bj, for any 1 ≤ j ≤ k.

b) If for some 1 ≤ j ≤ k Bj is not a simple ring, then δj = 0.

PROOF. (1) Suppose R is simple artinian. Then R = Mm(D) for some
division ring D and m ∈ N and the statement (1) is a particular case
of Theorem 3.2 from (Cauchon and Robson, 1978).

(2) Let 1 = e1 + . . . + en be the decomposition of 1 into the sum
of central primitive orthogonal idempotents of R. Then R =

∏n
i=1 Rei

and each Rei is simple artinian. By Proposition 2.3(2)(a), σ induces a
permutation ρ of the index set {1, . . . , n}. Let O1, . . . ,Ok denote the
orbits of this action and set Bj =

∏
i∈Oj

Rei for 1 ≤ j ≤ k. Let σj , δj be
the restriction of σ and δ to Bj . Then, by Theorem 1.3 from (Cauchon
and Robson, 1978), σj is an injective endomorphism of Bj and δj is a
σj-derivation of Bj . Therefore, we can decompose the ring R[x; σ, δ] in
the following way:

R[x; σ, δ] =
k∏

j=1

(Bj [yj ; σj , δj ]).

When the cardinality #Oj of the orbit Oj is equal to 1, then Bj is
simple and we can set xj = yj in this case. When #Oj > 1 then, by
Lemma 1.4 (Cauchon and Robson, 1978), δj is an inner σj-derivation of
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Bj , i.e. there is b ∈ Bj such that δ(r) = br−σ(r)b, for any r ∈ Bj . Then
Bj [yj ; σj , δj ] is isomorphic to the ring Bj [xj ; σj ], where xj = yj−b. This
completes the proof of the lemma. ¤

In the sequel, the left uniform dimension of a ring R is denoted by
udimR. The following result was obtained by Mushrub in (Mushrub,
2001). The original argument was lengthy, thus we present a new very
short proof.

LEMMA 3.2. Let R be a ring and R ⊆σ A a Jordan extension associ-
ated to an injective endomorphism of R. Then:
udimR[x; σ] = udimA[x; σ] = udimA.

PROOF. Let S = {xn | n ≥ 0}. It is known and easy to check (Cf.
(Jordan, 1982)) that S is a left Ore set in R[x;σ] and S−1R[x;σ] is
isomorphic to A[x, x−1; σ] = S−1A[x; σ]. The left uniform dimension is
preserved under left localizations with respect to Ore sets of regular
elements (Cf. Lemma 2.2.12 (McConnell and Robson, 1987)). Hence
udimR[x; σ] = udimA[x; σ] follows.

Now, as σ is an automorphism of A, a classical result of Shock (Cf.
(Shock, 1972), (Matczuk, 1995)) says that udimA = udimA[x; σ]. ¤

LEMMA 3.3. Let R be a semisimple ring, σ an injective endomorphism
and δ a σ-derivation of R. Then udimR[x; σ, δ] = udimR.

PROOF. Recall that if a ring B is isomorphic to
∏k

j=1 Bj , then udimB =∑k
j=1 udimBj . Hence, in virtue of Lemma 3.1, it is enough to prove the

lemma in two special cases: when δ = 0 and when R is simple artinian.
Case 1. Suppose that δ = 0, i.e. R[x; σ, δ] = R[x; σ]. Let R ⊆σ A be

the Jordan extension. Since R is semisimple, Corollary 2.4 implies that
udimA = udimR. The thesis is now clear, thanks to Lemma 3.2.

Case 2. Suppose that R is simple artinian, i.e R ' Mm(D) for
some division ring D. Thus, by Lemma 3.1 the ring R[x; σ, δ] can be
presented in the form Mm(D[y;σ′, δ′]) . Since D is a division ring,
D[y; σ′, δ′] is a principal left ideal domain, so udimD[y;σ′, δ′] = 1 and
udimR[x; σ, δ] = m = udimR follows. This completes the proof. ¤

THEOREM 3.4. Let R be a semiprime left Goldie ring with an injec-
tive endomorphism σ and R ⊆σ A be the corresponding Jordan exten-
sion. Then, for any σ-derivation δ of R, udimR[x;σ, δ] = udimR =
udimA.

PROOF. By Proposition 2.5, σ extends to an injective endomorphism
of Q(R) and δ extends to a σ-derivation of Q(R). Thus, we can consider
the ring extension R[x;σ, δ] ⊆ Q(R)[x; σ, δ].
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Clearly all elements from the set C of all regular elements of R are
invertible in Q(R)[x; σ, δ] and every element from Q(R)[x; σ, δ] can be
presented in the form c−1p for some c ∈ C and p ∈ R[x; σ, δ]. This means
that C is a left Ore set in R[x; σ, δ] and C−1(R[x; σ, δ]) = Q(R)[x; σ, δ].
Now, by (McConnell and Robson, 1987) Lemma 2.2.12, we obtain:

udimR[x; σ, δ] = udimQ(R)[x; σ, δ] and udimR = udimQ(R).

By Proposition 2.5 we know that A is semiprime left Goldie, so we also
have udimA = udimQ(A).

Notice that the same proposition yields that Q(R) ⊆σ Q(A) is a
Jordan extension. Since both Q(R) and Q(A) are semisimple rings,
Corollary 2.4 and Lemma 3.3 give us

udimQ(R) = udimQ(A) and udimQ(R)[x; σ, δ] = udimQ(R),

respectively. This implies the thesis. ¤
Mushrub in (Mushrub, 2001) investigated the left uniform dimension

of skew polynomial rings R[x; σ], where σ is an injective endomorphism
of R. He proved, in particular, that when R is a left Ore domain (i.e.
a domain with udimR = 1), then R[x; σ] is a left Ore domain. He also
constructed a series of examples showing that:

1. For any n ∈ N there is a commutative ring R (not semiprime)
with an injective endomorphism σ, such that udimR = n and
udimR[x; σ] = 1.

2. There exists a domain R with an injective endomorphism σ such
that udimR[x; σ] = 1 but R has infinite both left and right uniform
dimensions.

He posed a question whether udimR = udimR[x; σ] provided R is
a semiprime ring of finite left Goldie dimension. The above theorem
gives a positive answer to this question for R satisfying the ACC on
left annihilators. We also have the following:

COROLLARY 3.5. Let R be a left Ore domain with an injective endo-
morphism σ. Then R[x;σ, δ] is a left Ore domain, for any σ-derivation
δ of R.

PROOF. Since σ is injective, R[x; σ, δ] is a domain. Now the thesis is
a direct consequence of Theorem 3.4 ¤

Using Lemma 3.1 one can easily show that when R is a semiprime
left Goldie ring then the skew polynomial ring R[x; σ, δ] is semiprime
provided σ is injective. The following lemma is slightly more general.
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PROPOSITION 3.6. Suppose that the ring R satisfies the ACC on
left annihilators. Let σ and δ stand for an injective endomorphism and
a σ-derivation of R, respectively. Then the Ore extension R[x; σ, δ] is
prime (semiprime), provided R is prime (semiprime).

PROOF. Let I be an ideal of R[x; σ, δ]. For any n ≥ 0 define In =
{a ∈ R | either a = 0 or a is the leading coefficient of some polynomial
from I of degree n}. Clearly {In}n≥0 is an ascending sequence of left
ideals of R such that σl(In) ⊆ In+l, for any n, l ≥ 0. Since R satisfies
the ACC on left annihilators, it satisfies the DCC on right annihilators.
Therefore, there exists n0 ≥ 0 such that rannR(In) = rannR(I2n) for
any n ≥ n0.

Suppose that R is prime and let J be a nonzero ideal of R[x; σ, δ].
By the considerations above, there is m ≥ 0 such that, for any n ≥ m,
rannR(In) = rannR(I2n) and Jn 6= 0. Assume IJ = 0. Then Inσn(Jn) =
0. This means that σn(Jn) ⊆ rannR(In) = rannR(I2n) and I2nσn(Jn) =
0 follows. Since σn(In) ⊆ I2n, we get σn(InJn) = σn(In)σn(Jn) = 0.
This leads to InJn = 0 for any n ≥ m, as σ is injective. Since Jn 6= 0,
primeness of R yields In=0 for all n ≥ m and I = 0 follows. This shows
that R[x;σ, δ] is prime.

The same argument applied to J = I shows that R[x; σ, δ] is semi-
prime provided R is semiprime. ¤

In the case σ is an automorphism then the Ore extension R[x; σ, δ]
is always prime when R is prime. However semiprimeness of R does
not imply semiprimeness of R[x; σ, δ]. In the case σ is an injective
endomorphism, the situation is more complex, as the following example
shows. Namely, there exists a prime ring R such that R[x; σ, δ] is not
semiprime.

EXAMPLE 3.7. Let R be a subset of N × N matrices over a field K
defined as follows R = {M | M =

∑n
i,j=1 aijeij + a

∑∞
i=n+1 eii for some

n ∈ N and aij , a ∈ K}, where {eij}i,j∈N denotes the set of matrix
units. Then R is a prime unital ring and it is easy to check that the
map σ: R → R given by

σ(
n∑

i,j=1

aijeij + a
∞∑

i=n+1

eii) = ae11 +
n∑

i,j=1

aijei+1,j+1 + a
∞∑

i=n+2

eii

is an injective endomorphism of R.
Notice that e11σ(R) = Ke11. Therefore, for any k ≥ 0, we have in

R[x;σ] :
e11xRxke11 = Ke11e2+k,2+kx

k+1 = 0.

This shows that e11xR[x; σ] is a nilpotent left ideal of R[x; σ], i.e. R[x; σ]
is not semiprime. ¤
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Let R ⊆σ A be the Jordan extension where R and σ are as in the
above example. Then, by Proposition 2.6, we can consider the Jordan
extension R[x;σ] ⊆σ A[x, σ]. Then, as we have seen, R[x;σ] is not
semiprime but A[x, σ] is a prime ring since A is prime and σ is an
automorphism of A.

We close the paper with the following:

THEOREM 3.8. Let R be a semiprime left Goldie ring, σ, δ an injec-
tive endomorphism and a σ-derivation of R, respectively. Then R[x; σ, δ]
is also a semiprime left Goldie ring.

PROOF. By Proposition 3.6 and Theorem 3.4 we know that R[x; σ, δ]
is a semiprime ring of finite left Goldie dimension. Thus, in order to
complete the proof, it is enough to show that R[x; σ, δ] satisfies the
ACC on left annihilators. As we have seen in Proposition 2.5, σ and δ
can be extended to an injective endomorphism and a σ-derivation of
Q(R). Since the ACC on left annihilators is inherited on subrings, it is
enough to prove that Q(R)[x; σ, δ] satisfies the ACC on left annihilators.
This means that without loss of generality we may assume that R is
semisimple. Then, by making use of Lemma 3.1, it is enough to consider
only two cases: when R is simple artinian and when δ = 0.

Case 1. Suppose R is simple artinian. Then, by Lemma 3.1, R[x; σ, δ]
is isomorphic to Mm(D[y, σ′, δ′]) for some m, where D is a division
ring. D[y, σ′, δ′] is a left principal domain so, in particular, it is a prime
left Goldie ring. Therefore, by Corollary 3.1.5 from (McConnell and
Robson, 1987), R[x;σ, δ] is a prime left Goldie ring, thus satisfies the
ACC on left annihilators.

Case 2. Suppose that δ = 0, i.e. R[x; σ, δ] = R[x; σ]. Let R ⊆σ A
be the Jordan extension. By Corollary 2.4, A is also semisimple. Now
σ is an automorphism of A so, by Theorem 2.6 of (Matczuk, 1995),
A[x; σ] is a semiprime Goldie ring and R[x;σ] satisfies the ACC on left
annihilators as a subring of A[x; σ]. ¤

If σ is an automorphism of a semiprime ring R, then it is known (Cf.
Theorem 2.6 (Matczuk, 1995)) that R is semiprime left Goldie if and
only if the Ore extension R[x; σ, δ] is semiprime left Goldie. The quoted
earlier example of Mushrub shows that when σ is just an injective
endomorphism, then the above equivalence does not hold. However,
using Theorem 3.8, one can easily show that R[x; σ, δ] is semiprime left
Goldie if and only if R is semiprime left Goldie provided R is semiprime
and udimR is finite.
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